搜索
题目内容
已知CA=CB=CD,过A,C,D三点的圆交AB于点F.求证:CF为∠DCB的平分线.
试题答案
相关练习册答案
证明:连接DF,BD,
∵AC=CB=CD,
∴∠A=∠2,∠CDB=∠CBD,
又∵∠A=∠1,
∴∠1=∠2,
∴∠FDB=∠FBD,
∴DF=BF
在△DCF和△BCF中,
∵DF=BF
∠1=∠2,
CD=CB,
∴△DCF≌△BCF,
∴∠DCF=∠BCF
即CF为∠DCB的平分线
练习册系列答案
期末寒假大串联黄山书社系列答案
金牌教辅假期快乐练培优寒假作业系列答案
仁爱英语开心寒假系列答案
名题文化步步高书系寒假作业武汉出版社系列答案
Happy寒假作业快乐寒假系列答案
金象教育U计划学期系统复习寒假作业系列答案
八斗才火线计划寒假西安交通大学出版社系列答案
伴你成长橙色寒假系列答案
帮你学寒假作业系列答案
备战中考寒假系列答案
相关题目
15、已知CA=CB=CD,过A,C,D三点的圆交AB于点F.求证:CF为∠DCB的平分线.
29、如图,CD是经过∠BCA顶点C的一条直线,且直线CD经过∠BCA的内部,点E,F在射线CD上,已知CA=CB且∠BEC=∠CFA=∠α.
(1)如图1,若∠BCA=90°,∠α=90°,问EF=BE-AF,成立吗?说明理由.
(2)将(1)中的已知条件改成∠BCA=60°,∠α=120°(如图2),问EF=BE-AF仍成立吗?说明理由.
(3)若0°<∠BCA<90°,请你添加一个关于∠α与∠BCA关系的条件,使结论EF=BE-AF仍然成立.你添加的条件是
∠α+∠BCA=180°
.(直接写出结论)
已知CA=CB=CD,过A,C,D三点的圆交AB于点F.求证:CF为∠DCB的平分线.
已知CA=CB=CD,过A,C,D三点的圆交AB于点F.求证:CF为∠DCB的平分线.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案