题目内容

图1是边长分别为4和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
请问:经过多少时间,△PQR与△ABC重叠部分的面积恰好等于
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设
∠AC C′=α(30°<α<90,图4);
探究:在图4中,线段C′N•E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N•E′M的值,如果有变化,请你说明理由.

【答案】分析:(1)由△ABC与△DCE是等边三角形,利用SAS易证得△BCE≌△ACD,即可得BE=AD;
(2)首先设经过x秒重叠部分的面积是,在△CQT中,求得QT=QC=x,RT=3-x,根据三角形面积公式可得方程×32-(3-x)2=,解此方程即可求得答案;
(3)首先证得∠MCE′=∠CNC′,又由∠E′=∠C′,根据有两角对应相等的三角形相似证得△E′MC∽△C′CN,又由相似三角形的对应边成比例,即可求得答案.
解答:解:(1)BE=AD(1分)
证明:∵△ABC与△DCE是等边三角形,
∴∠ACB=∠DCE=60°,CA=CB,CE=CD,
∴∠BCE=∠ACD,
∴△BCE≌△ACD,
∴BE=AD;(也可用旋转方法证明BE=AD)(3分)

(2)设经过x秒重叠部分的面积是
如图在△CQT中,
∵∠TCQ=30°,∠RQP=60°,
∴∠QTC=30°,
∴∠QTC=∠TCQ,
∴QT=QC=x,
∴RT=3-x,
∵∠RTS+∠R=90°,
∴∠RST=90°,(5分)
由已知得×32-(3-x)2=,(6分)
∴x1=1,x2=5,
∵0≤x≤3,
∴x=1,
答:经过1秒重叠部分的面积是;(7分)

(3)C′N•E′M的值不变.(8分)
证明:∵∠ACB=60°,
∴∠MCE′+∠NCC′=120°,
∵∠CNC′+∠NCC′=120°,
∴∠MCE′=∠CNC′,(9分)
∵∠E′=∠C′,
∴△E′MC∽△C′CN,

∴C′N•E′M=C′C•E′C=×=.(10分)
点评:此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及一元二次方程的求解方法等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网