题目内容
下列各对数中互为相反数的是( )
A. ﹣(+5)和+(﹣5) B. ﹣(﹣5)和+(﹣5) C. ﹣(+5)和﹣5 D. +(﹣5)和﹣5
甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.
(1)求如图所示的y与x的函数解析式:(不要求写出定义域);
(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
如图所示,在△ABC中,AB=AC,D、E分别是AC、AB的中点,且BD,CE相交于O点,某一位同学分析这个图形后得出以下结论: ①△BCD≌△CBE; ②△BDA≌△CEA; ③△BOE≌△COD; ④△BAD≌△BCD;⑤△ACE≌△BCE,上述结论一定正确的是( )
A. ①②③ B. ②③④ C. ①③⑤ D. ①③④
若xay与3x2yb是同类项,则ab的值为_____.
下列关于单项式﹣3x5y2的说法中,正确的是( )
A. 它的系数是3 B. 它的次数是7 C. 它的次数是5 D. 它的次数是2
用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5
(1)求2⊕(﹣2)的值;
(2)若[()⊕(﹣3)]⊕=a+4,求a的值.
一个角的补角加上14°,等于这个角的余角的5倍,这个角的度数是 °.
如图所示,AB是00的直径,BC是⊙O的切线,连接AC,交⊙0于D,E为弧AD上一点,连接AE,BE交AC于点F且,(1)求证CB=CF;(2)若点E到弦AD的距离为3,cos C=,求⊙O的半径.
如图,一次函数的图像与反比例函数的图像相交于A、B两点,
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像写出关于x的方程:的解.
(3)根据图像写出关于x的不等式:的解集.