题目内容


如图,已知E,F,G,H分别是▱ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.


【考点】平行四边形的判定.

【专题】证明题.

【分析】易证得△AEH≌△CGF,从而证得对应边BE=DG、DH=BF.故有△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形得证.

【解答】证明:在平行四边形ABCD中,∠A=∠C(平行四边形的对边相等);

又∵AE=CG,AH=CF(已知),

∴△AEH≌△CGF(SAS),

∴EH=GF(全等三角形的对应边相等);

在平行四边形ABCD中,AB=CD,AD=BC(平行四边形的对边相等),

∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,

即BE=DG,DH=BF.

又∵在平行四边形ABCD中,∠B=∠D,

∴△BEF≌△DGH;

∴GH=EF(全等三角形的对应边相等);

∴四边形EFGH是平行四边形(两组对边分别相等的四边形是平行四边形).

【点评】本题考查了平行四边形的判定和性质、全等三角形的判定和性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网