题目内容
如图1,矩形纸片ABCD中,AB=4,BC=4
【答案】分析:先设AD和BC交于点O,△AD′C和△ADC关于AC对称,可得CD=CD′=AB,利用勾股定理,可求AC,那么sin∠ACB=
,有∠ACB=30°,∠BAC=60°,就有∠BAO=∠D′AC=∠ACB=∠D′CB=30°,根据图形可得△ABO≌△CD′O,可得,OB=OD′,所以∠OBD=∠OD′B,而∠AOC=∠BOD′,于是∠OBD′=∠OD′B=30°,就有∠AD′B=∠BAD′=30°,从而可得BD′=AB=4.
解答:
解:设AD′交BC于O,
方法一:
过点B作BE⊥AD′于E,
矩形ABCD中,
∵AD∥BC,AD=BC,
∠B=∠D=∠BAD=90°,
在Rt△ABC中,
∵tan∠BAC=
,
∴∠BAC=60°,∴∠DAC=90°-∠BAC=30°,(2分)
∵将△ACD沿对角线AC向下翻折,得到△ACD′,
∴AD′=AD=BC=
,∠1=∠DAC=30°,
∴∠4=∠BAC-∠1=30°,
又在Rt△ABE中,∠AEB=90°,∴BE=2,(4分)
∴AE=
,∴D′E=AD′-AE=
,
∴AE=D′E,即BE垂直平分AD′,∴BD′=AB=4.(5分)
方法二:
矩形ABCD中,∵AD∥BC,AD=BC,∠B=∠D=90°,∴∠ACB=∠DAC,
在Rt△ABC中,∵tan∠BAC=
,
∴∠BAC=60°,∴∠ACB=90°-∠BAC=30°,(2分)
∵将△ACD沿对角线AC向下翻折,得到△ACD′,
∴AD=AD′=BC,∠1=∠DAC=∠ACB=30°,
∴OA=OC,
∴OD′=OB,∴∠2=∠3,
∵∠BOA=∠1+∠ACB=60°,∠2+∠3=∠BOA,
∴∠2=
∠BOA=30°,(4分)
∵∠4=∠BAC-∠1=30°,
∴∠2=∠4,
∴BD′=AB=4.(5分)
点评:本题利用了折叠的图形全等,勾股定理,反三角函数,全等三角形的判定和性质.
解答:
方法一:
过点B作BE⊥AD′于E,
矩形ABCD中,
∵AD∥BC,AD=BC,
∠B=∠D=∠BAD=90°,
在Rt△ABC中,
∵tan∠BAC=
∴∠BAC=60°,∴∠DAC=90°-∠BAC=30°,(2分)
∵将△ACD沿对角线AC向下翻折,得到△ACD′,
∴AD′=AD=BC=
∴∠4=∠BAC-∠1=30°,
又在Rt△ABE中,∠AEB=90°,∴BE=2,(4分)
∴AE=
∴AE=D′E,即BE垂直平分AD′,∴BD′=AB=4.(5分)
方法二:
矩形ABCD中,∵AD∥BC,AD=BC,∠B=∠D=90°,∴∠ACB=∠DAC,
在Rt△ABC中,∵tan∠BAC=
∴∠BAC=60°,∴∠ACB=90°-∠BAC=30°,(2分)
∵将△ACD沿对角线AC向下翻折,得到△ACD′,
∴AD=AD′=BC,∠1=∠DAC=∠ACB=30°,
∴OA=OC,
∴OD′=OB,∴∠2=∠3,
∵∠BOA=∠1+∠ACB=60°,∠2+∠3=∠BOA,
∴∠2=
∵∠4=∠BAC-∠1=30°,
∴∠2=∠4,
∴BD′=AB=4.(5分)
点评:本题利用了折叠的图形全等,勾股定理,反三角函数,全等三角形的判定和性质.
练习册系列答案
相关题目