题目内容

如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.

(1)求证:AE⊥DE;

(2)若∠CBA=60°,AE=3,求AF的长.

(1)证明见解析;(2)2.

【解析】

试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;

(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB中,利用已知条件求得答案.

试题解析:(1)证明:连接OC,

∵OC=OA,

∴∠BAC=∠OCA,

∴∠BAC=∠EAC,

∴∠EAC=∠OCA,

∴OC∥AE,

∵DE切⊙O于点C,

∴OC⊥DE,

∴AE⊥DE;

(2)【解析】
∵AB是⊙O的直径,

∴△ABC是直角三角形,

∵∠CBA=60°,

∴∠BAC=∠EAC=30°,

∵△AEC为直角三角形,AE=3,

∴AC=2

连接OF,

∵OF=OA,∠OAF=∠BAC+∠EAC=60°,

∴△OAF为等边三角形,

∴AF=OA=AB,

在Rt△ACB中,AC=2,tan∠CBA=

∴BC=2,

∴AB=4,

∴AF=2.

考点:切线的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网