题目内容
如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
(6分)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,点D在AC上.
(1)若F是BD的中点,求证:CF=EF;
(2)将图1中的△AED绕点A顺时针旋转,使AE恰好在AC上(如图2).若F为BD上一点,且CF=EF,求证:BF= DF;
(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3).若F是BD的中点.探究CE与EF的数量关系,并证明你的结论.
如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为 .
如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。
如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E,若⊿BCE的面积为8,则k= 。
在一下数据75,80,80,85,90中,众数、中位数分别是( )
A、75,80 B、80,80 C、80,85 D、80,90
(10分)在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线与的交点为P.
(1)如图1,当时,线段的长等于 ,线段的长等于 ;(直接填写结果)
(2)如图2,当时,求证:,且;
(3)①设BC的中点为M,则线段PM的长为 ;②点P到AB所在直线的距离的最大值为 .(直接填写结果)
如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心O.若∠B=20°,则∠C的大小等于( )
A.20° B.25° C. 40° D.50°
如图,点A、B、C在⊙O上,且∠AOB=120°,则∠A+∠B=