题目内容
(2006•扬州)“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.某荷藕加工企业已收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,每天可加工8吨,每吨可获利1 000元;如果进行精加工,每天可加工0.5吨,每吨可获利5 000元.由于受设备条件的限制,两种加工方式不能同时进行.(1)设精加工的吨数为x吨,则粗加工的吨数为______吨,加工这批荷藕需要______天,可获利______元(用含x的代数式表示);
(2)为了保鲜的需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕,精加工的吨数x在什么范围内时,该企业加工这批荷藕的获利不低于80 000元?
【答案】分析:(1)根据题意直接列式即可;(2)根据“一个月(30天)内”“获利不低于80000元”列不等式求解即可.
解答:解:(1)60-x,
+
=
,4000x+60000
(2)由题意列不等式组得:
解得:5≤x≤12.
所以当5≤x≤12时,该企业加工这批荷藕的获利不低于80000元.
点评:本题考查正确列代数式、不等式解决问题的能力.理解确定精加工吨数的条件是解决本题的关键.
解答:解:(1)60-x,
(2)由题意列不等式组得:
解得:5≤x≤12.
所以当5≤x≤12时,该企业加工这批荷藕的获利不低于80000元.
点评:本题考查正确列代数式、不等式解决问题的能力.理解确定精加工吨数的条件是解决本题的关键.
练习册系列答案
相关题目
(2006•扬州)我市某企业生产的一批产品上市后40天内全部售完,该企业对这一批产品上市后每天的销售情况进行了跟踪调查.表一、表二分别是国内、国外市场的日销售量y1、y2(万件)与时间t(t为整数,单位:天)的部分对应值.
表一:国内市场的日销售情况
表二:国外市场的日销售情况
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
(2)分别探求该产品在国外市场上市30天前与30天后(含30天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式.试用所得函数关系式判断上市后第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
表一:国内市场的日销售情况
| 时间t(天) | 1 | 2 | 10 | 20 | 30 | 38 | 39 | 40 | |
| 日销售量y1(万件) | 5.85 | 11.4 | 45 | 60 | 45 | 11.4 | 5.85 |
| 时间t(天) | 1 | 2 | 3 | 25 | 29 | 30 | 31 | 32 | 33 | 39 | 40 | |
| 日销售量y2(万件) | 2 | 4 | 6 | 50 | 58 | 60 | 54 | 48 | 42 | 6 |
(2)分别探求该产品在国外市场上市30天前与30天后(含30天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式.试用所得函数关系式判断上市后第几天国内、外市场的日销售总量y最大,并求出此时的最大值.