题目内容

矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为(  )
A.16B.
11
2
C.22D.8

由折叠的性质可得:CG=AD=4,GF=DF=CD-CF,∠G=90°,
则△CFG为直角三角形,
在Rt△CFG中,FC2-CG2=FG2
即FC2-42=(8-FC)2
解得:FC=5,
∴S△CEF=
1
2
FC•AD=
1
2
×5×4=10,
则着色部分的面积为:S矩形ABCD-S△CEF=AB•AD-10=8×4-10=22.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网