题目内容

精英家教网小芳同学在出黑板报时画出了一月牙形的图案如图,其中△AOB为等腰直角三角形,以O为圆心,OA为半径作扇形OAB,再以AB的中点C为圆心,以AB为直径作半圆,则月牙形阴影部分的面积S1与△AOB的面积S2之间的大小关系是(  )
A、S1<S2B、S1=S2C、S1>S2D、无法确定
分析:首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形-三角形的关系求出弓形的面积,进行比较得出它们的面积关系.
解答:精英家教网解:设半径为r,则S△AOB=
1
2
r2

S扇形AOB=
90πr2
360
=
πr2
4

S弓形=
πr2-2r2
4

利用勾股定理可知AB=
2
r
∴S扇形ABD=
180π×(
2
r
2
)
2
360
=
πr2
4

∴S阴影=
πr2
4
-
πr2-2r2
4
=
r2
2

故选B.
点评:本题的关键是算出三个图形的面积,首先利用扇形公式计算出第一个扇形的面积,再利用弓形等于扇形-三角形的关系求出弓形的面积,进行比较得出它们的面积关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网