题目内容
如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( ).
A. B. C. D.
如图是一个几何体的三视图,则这个几何体是( )
用配方法解方程x2﹣2x﹣1=0,原方程应变形为( )
A. (x﹣1)2=2 B. (x+1)2=2 C. (x﹣1)2=1 D. (x+1)2=1
某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是_____.
下列说法正确的是( )
A. 若你在上一个路口遇到绿灯,则在下一路口必遇到红灯
B. 某蓝球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%
C. “明天我市会下雨”是随机事件
D. 若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖
如图,在河岸的同侧有一个村庄A和自来水处理厂B,现在要在河岸上建一个抽水站D,将河中的水输送到自来水处理厂处理后再送往A村.为了节省资金,所铺设的水管应尽可能短.问抽水站应建在何处?沿怎样的路线铺设水管?在图中画出来.
计算:25×-(-25)×+25×(-).
如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为( )
A. B. C. D.2