题目内容

如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.证明:△ABG≌△ADE.

证明:在正方形ABCD和正方形AEFG中,
∠GAE=∠BAD=90°,
且∠GAE+∠EAB=∠BAD+∠EAB,
即∠GAB=∠EAD,
在△ABG和△ADE中,

∴△ABG≌△ADE(SAS).
分析:在正方形ABCD中,AB=AD,在正方形AEFG中,GA=EA,要求证△ABG≌△ADE,求证∠GAB=∠EAD即可.
点评:本题考查了正方形各边相等、各内角为直角的性质,考查了全等三角形的判定,本题中求证∠GAB=∠EAD是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网