题目内容
如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( )![]()
| A. | B. | C. | D. |
A
解析试题分析:∵△ABC中,AB=AC,∠BAC=20°
∴∠ACB=80°
又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°
∴∠PAB+∠CAQ=80°
△ABC中:∠ACB=∠CAQ+∠AQC=80°
∴∠AQC=∠PAB
同理:∠P=∠CAQ
∴△APB∽△QAC
∴
,即
=
.
则函数解析式是y=
.
故选A.
考点:相似三角形的性质;动点问题的函数图象;等腰三角形的性质.5103
点评:注意本题不一定要通过求解析式来解决.能够根据角度的关系,联想到△APB∽△QAC是解决本题的关键.
练习册系列答案
相关题目