题目内容

如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,求四边形ABCD的面积.

解:连接AC,
∵∠ABC=90°,AB=4cm,BC=3cm,
∴AC=5cm,
∵CD=12cm,DA=13cm,
AC2+CD2=52+122=169=132=DA2
∴△ADC为直角三角形,
∴S四边形ABCD=S△ACD-S△ABC
=AC×CD-AB×BC
=×5×12-×4×3
=30-6
=24.
故四边形ABCD的面积为24cm2
分析:连接AC,在Rt△ADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ADC中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD的面积为Rt△ACD与Rt△ABC的面积之差.
点评:本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出△ACD的形状是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网