题目内容
若=,则x的取值范围是( )
A. x<3 B. x≤3 C. 0≤x<3 D. x≥0
已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;
(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.
我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这名同学成绩的( )
A. 众数 B. 中位数 C. 平均数 D. 方差
如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6,沿DE折叠,使得点A与点B重合,则折痕DE的长为____.
若x2+mxy+4y2是完全平方式,则常数m的值为( )
A. 4 B. ﹣4
C. ±4 D. 以上结果都不对
如图,四边形ABCD是正方形,点E、K分别在BC、AB上,CE=BK,点G在BA的延盖
长线上,且DG⊥DE.
(1)如图(1)求证:CK=DG;
(2)如图(2)不添加任何辅助线的条件下,直接写出图中所有的与四边形BEDK面积相等
的三角形。
图1 图2
一个扇形的弧长是Cm,半径是6cm,则此扇形的圆心角是_______度.
如图,在△ABC中,O是AC上一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形且,求∠B的大小.
如果将电影票上“6排3号”简记为(6,3),那么“10排10号”可表示为_______;(7,1)表示的含义是___________.