题目内容
如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为 .
【答案】分析:根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M到正方形各顶点的距离都为1,故点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.
解答:解:根据题意得点M到正方形各顶点的距离都为1,点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,
∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.
而正方形ABCD的面积为2×2=4,4个扇形的面积为4×
=π,
∴点M所经过的路线围成的图形的面积为4-π.
故答案为4-π.
点评:本题直角三角形斜边上的中线等于斜边的一半,正方形的性质以及扇形面积的计算.
解答:解:根据题意得点M到正方形各顶点的距离都为1,点M所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,
∴点M所经过的路线围成的图形的面积为正方形ABCD的面积减去4个扇形的面积.
而正方形ABCD的面积为2×2=4,4个扇形的面积为4×
∴点M所经过的路线围成的图形的面积为4-π.
故答案为4-π.
点评:本题直角三角形斜边上的中线等于斜边的一半,正方形的性质以及扇形面积的计算.
练习册系列答案
相关题目