题目内容
小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局.小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率.
分析:列表得出所有等可能的情况数,找出点数之和大于7的情况数,即可求出小轩胜小峰的概率.
解答:解:列表如下:
所有等可能的情况有36种,其中15种之和大于7,
则P胜小峰=
=
.
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
| 2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
| 3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
| 4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
| 5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
| 6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
则P胜小峰=
| 15 |
| 36 |
| 5 |
| 12 |
点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目