题目内容
3
3
.分析:首先连接AE,由BE是⊙O的直径,可得∠BAE=90°,又由AB⊥CD,可证得AE∥CD,继而可证得AC=DE,则可求得答案.
解答:
解:连接AE,
∵BE是⊙O的直径,
∴∠BAE=90°,
即AB⊥AE,
∵AB⊥CD,
∴AE∥CD,
∴∠ACD+∠CAE=180°,
∵四边形ACDE是⊙O的内接四边形,
∴∠CAE+∠CDE=180°,
∴∠ACD=∠CDE,
∴
=
,
∴
=
,
∴DE=AC=3.
故答案为:3.
∵BE是⊙O的直径,
∴∠BAE=90°,
即AB⊥AE,
∵AB⊥CD,
∴AE∥CD,
∴∠ACD+∠CAE=180°,
∵四边形ACDE是⊙O的内接四边形,
∴∠CAE+∠CDE=180°,
∴∠ACD=∠CDE,
∴
| CE |
| AD |
∴
| AC |
| DE |
∴DE=AC=3.
故答案为:3.
点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目