题目内容
如图,在Rt△ABC中,∠ACB=90°,D是BC边上一点,AD⊥DE,且DE交AB于点E,CF⊥AB交AD于点G,F为垂足,(1)求证:△ACG∽△DBE;
(2)CD=BD,BC=2AC时,求
【答案】分析:(1)由在Rt△ABC中,∠ACB=90°,AD⊥DE,CF⊥AB,根据等角的余角相等,易证得∠CAD=∠BDE,∠ACF=∠B,继而可证得△ACG∽△DBE;
(2)首先过点E作EH⊥BC于点H,易证得△BEH∽△BAC,然后根据相似三角形的对应边成比例,可得EH:AC=BH:BC=DE:AD,易证得△DEH是等腰直角三角形,则可求得BH:BC=1:3,则可求得答案.
解答:(1)证明:∵在Rt△ABC中,∠ACB=90°,AD⊥DE,CF⊥AB,
∴∠ACF+∠BCF=90°,∠B+∠BCF=90°,∠ADC+∠BDE=90°,∠CAD+∠ADC=90°,
∴∠CAD=∠BDE,∠ACF=∠B,
∴△ACG∽△DBE;
(2)解:过点E作EH⊥BC于点H,
∵∠ACB=90°,
∴EH∥AC,
∴△BEH∽△BAC,
∴EH:AC=BH:BC=DE:AD,
∴AC:BC=EH:BH,
∵CD=BD,BC=2AC,BC=CD+BD,
∴AC=CD=BD,
∴∠ADC=45°,
∵AD⊥DE,
∴∠EDH=45°,
∴DH=EH,
∴EH:BH=AC:BC=1:2,
∴EH=DH=
BH,
∴BH:BC=
=
,
即EH:AC=1:3,
∴
=
.
点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
(2)首先过点E作EH⊥BC于点H,易证得△BEH∽△BAC,然后根据相似三角形的对应边成比例,可得EH:AC=BH:BC=DE:AD,易证得△DEH是等腰直角三角形,则可求得BH:BC=1:3,则可求得答案.
解答:(1)证明:∵在Rt△ABC中,∠ACB=90°,AD⊥DE,CF⊥AB,
∴∠ACF+∠BCF=90°,∠B+∠BCF=90°,∠ADC+∠BDE=90°,∠CAD+∠ADC=90°,
∴∠CAD=∠BDE,∠ACF=∠B,
∴△ACG∽△DBE;
∵∠ACB=90°,
∴EH∥AC,
∴△BEH∽△BAC,
∴EH:AC=BH:BC=DE:AD,
∴AC:BC=EH:BH,
∵CD=BD,BC=2AC,BC=CD+BD,
∴AC=CD=BD,
∴∠ADC=45°,
∵AD⊥DE,
∴∠EDH=45°,
∴DH=EH,
∴EH:BH=AC:BC=1:2,
∴EH=DH=
∴BH:BC=
即EH:AC=1:3,
∴
点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目