题目内容
如图,在?ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=
∴BE=DF.
∴△ABE≌△CDF.
(2)解:∵四边形AECF为菱形时,
∴AE=EC.
又∵点E是边BC的中点,
∴BE=EC,即BE=AE.
又BC=2AB=4,
∴AB=
∴AB=BE=AE,即△ABE为等边三角形,
?ABCD的BC边上的高为2×sin60°=
∴菱形AECF的面积为2
分析:第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.
第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.
点评:考查了全等三角形,四边形的知识以及逻辑推理能力.
(1)用SAS证全等;
(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.
练习册系列答案
相关题目