题目内容
分析:由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为4,可求出AB的长,从而得出结果.
解答:
解:连接BD,与AC交于点F.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
∵正方形ABCD的面积为4,
∴AB=2.
又∵△ABE是等边三角形,
∴BE=AB=2.
∴所求最小值为2.
故选A.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
∵正方形ABCD的面积为4,
∴AB=2.
又∵△ABE是等边三角形,
∴BE=AB=2.
∴所求最小值为2.
故选A.
点评:此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.
练习册系列答案
相关题目