题目内容
如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为( )
A. 40° B. 45° C. 60° D. 80°
若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若一个三位数的十位上数字为7,且从4、5、6、8中随机选取两数,与7组成“中高数”,那么组成“中高数”的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)
甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S乙2=0.035,则( )
A. 甲的成绩比乙的成绩稳定
B. 乙的成绩比甲的成绩稳定
C. 甲、乙两人的成绩一样稳定
D. 甲、乙两人成绩的稳定性不能比较
计算:
(1)|﹣2|﹣ +(﹣2016)0;
(2)-
如图,一个量角器放在∠BAC的上面,则∠BAC=______________.
【问题提出】
平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.
【初步思考】
(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)
(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证: DA2=DB·DE.
【深入研究】
(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.
如图,BD为正方形ABCD的对角线,BE平分∠DBC ,交DC与点E,将△BCE绕点C按顺时针旋转90°得到△DCF, 若CE=3cm,则BF=_______cm.
如图,已知△ABC和△ECD都是等边三角形, B、C、D在一条直线上。
求证:(1)BE=AD;
(2)CF=CH;
(3)△FCH是等边三角形;
(4)FH∥BD;
(5)求∠EMD的度数。;
将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(-2,0),∠ =30°.则Δ旋转过程中所扫过的图形的面积为( )
A. B. C. D.