题目内容
如图,△ABC的三条内角平分线相交于点O,过点O作OE⊥BC于E点,求证:∠BOD=∠COE.

证明:∵∠AFO=∠FBC+∠ACB=
∠ABC+∠ACB,
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
∠BAC+
∠ABC+∠ACB]
=180°-[
(∠BAC+∠ABC)+∠ACB]
=180°-[
(180°-∠ACB)+∠ACB]
=180°-[90°+
∠ACB]
=90°-
∠ACB,
∴∠BOD=∠AOF=90°-
∠ACB,
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
∠ACB,
∴∠BOD=∠COE.

| 1 |
| 2 |
∴∠AOF=180°-(∠DAC+∠AF0)
=180°-[
| 1 |
| 2 |
| 1 |
| 2 |
=180°-[
| 1 |
| 2 |
=180°-[
| 1 |
| 2 |
=180°-[90°+
| 1 |
| 2 |
=90°-
| 1 |
| 2 |
∴∠BOD=∠AOF=90°-
| 1 |
| 2 |
又∵在直角△OCE中,∠COE=90°-∠OCD=90°-
| 1 |
| 2 |
∴∠BOD=∠COE.
练习册系列答案
相关题目