题目内容
某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .
如图,在菱形ABCD中,AB=10,sinA=,点E在AB上,AE=4,过点E作EF∥AD,交CD于点F.
(1)请写出菱形ABCD的面积: ;
(2)若点P从点A出发以1个单位长度/秒的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位长度/秒的速度沿着线段EF向终点F运动,设运动时间为t(秒).
①当t=5时,求PQ的长;
②以P为圆心,PQ长为半径的⊙P是否能与直线AD相切?如果能,求此时t的值;如果不能,说明理由.
从-1,0,,π,中随机任取一数,取到无理数的概率是 .
小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的. 规定①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏, 估计游戏设计者可赚多少元?
如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,得到一条“波浪线”.若点P(35,m)在此“波浪线”上,则m的值为 .
若正比例函数y=kx(k≠0)与反比例函数y=(a≠0)的图像有两个交点,其中一个交点的坐标为(-3,-2),则另一个交点的坐标为( )
A.(2,3) B.(3,-2) C.(-2,3) D.(3,2)
动手实验:利用矩形纸片(如图1)剪出一个正六边形纸片;再利用这个正六边形纸片做一个无盖的正六棱柱(棱柱底面为正六边形) ,如图2.
(1) 做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?
(2) 在(1)的条件下,当矩形的长为2a时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率为多少?
已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③4a﹣2b+c<0;④8a+c>0.其中正确的有 ( )
A. 4个 B. 3个 C. 2个 D. 1个
如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为,OP=1.求BC的长.