题目内容

(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.

填空:①∠AEB的度数为 ___ ______;

②线段AD,BE之间的数量关系为 ___ ______.

(2)拓展探究

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D ,E在同一直线上,CM为△DCE中 DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.

 

 

(1)60°.AE=BE+2CM.(2)AE=BE+2CM.

【解析】

试题分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.

(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.

试题解析:(1)①如图1,

∵△ACB和△DCE均为等边三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=90°.

∴∠ACD=∠BCE.

在△ACD和△BCE中,

∴△ACD≌△BCE.

∴∠ADC=∠BEC.

∵△DCE为等边三角形,

∴∠CDE=∠CED=60°.

∵点A,D,E在同一直线上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=∠BEC﹣∠CED=60°.

②∵△ACD≌△BCE,

∴AD=BE.

(2)∠AEB=90°,AE=BE+2CM.

理由:如图2,

∵△ACB和△DCE均为等腰直角三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=90°.

∴∠ACD=∠BCE.

∵△ACD≌△BCE.

∴AD=BE,∠ADC=∠BEC.

∵△DCE为等腰直角三角形,

∴∠CDE=∠CED=45°.

∵点A,D,E在同一直线上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=∠BEC﹣∠CED=90°.

∵CD=CE,CM⊥DE,

∴DM=ME.

∵∠DCE=90°,

∴DM=ME=CM.

∴AE=AD+DE=BE+2CM.

考点:1。全等三角形的判定与性质;2.等腰三角形的性质;3.等边三角形的性质;4.直角三角形斜边上的中线

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网