题目内容
如图,在△ABC中,EF∥BC,S△AEF=S△BCE.若S△ABC=l,则S△CEF等于
- A.

- B.

- C.
-2 - D.

C
分析:可设S△CEF=x,由三角形的面积以及线段的平行关系可得出边长与面积之间的等量关系,进而求解即可.
解答:设S△CEF=x,则S△AEF=S△BCE=
,故S△AEC=
,
则
=
=
,
又∵EF∥BC,
∴
=
=
,
又∵
=
,
解得x=
-2.
故选C.
点评:本题主要考查了相似三角形的判定以及三角形的面积与边长之间的关系,能够掌握并求解一些简单的计算问题.
分析:可设S△CEF=x,由三角形的面积以及线段的平行关系可得出边长与面积之间的等量关系,进而求解即可.
解答:设S△CEF=x,则S△AEF=S△BCE=
则
又∵EF∥BC,
∴
又∵
解得x=
故选C.
点评:本题主要考查了相似三角形的判定以及三角形的面积与边长之间的关系,能够掌握并求解一些简单的计算问题.
练习册系列答案
相关题目