搜索
题目内容
使式子
1-x
2+x
有意义的x的取值范围是______.
试题答案
相关练习册答案
根据题意得,1-x≥0且2+x≠0,
解得x≤1且x≠-2.
故答案为:x≤1且x≠-2.
练习册系列答案
单元月考卷系列答案
小升初系统总复习指导与检测系列答案
口算达标天天练系列答案
小学毕业升学复习必做的18套试卷系列答案
小桔豆阅读与作文高效训练系列答案
总复习系统强化训练系列答案
小考宝典系列答案
高中新课程评价与检测系列答案
呼和浩特市预测卷系列答案
中考指南系列答案
相关题目
24、阅读并解决问题.
对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添-适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-6a+8.
(2)若a+b=5,ab=6,求:①a
2
+b
2
;②a
4
+b
4
的值.
(3)已知x是实数,试比较x
2
-4x+5与-x
2
+4x-4的大小,说明理由.
28、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5) ①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001(4分)
问题2:对于形如x
2
+2xa+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2xa-3a
2
,就不能直接运用公式了.
此时,我们可以在二次三项式x
2
+2xa-3a
2
中先加上一项a
2
,使它与x
2
+2xa的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:x
2
+2xa-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-4a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a
2
-6a+8.
31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=200
2
-5
2
②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x
2
+2ax+a
2
这样的二次三项式,可以用公式法将它分解成(x+a)
2
的形式.但对于二次三项式x
2
+2ax-3a
2
,就不能直接运用公式了.此时,我们可以在二次三项式x
2
+2ax-3a
2
中先加上一项a
2
,使它与x
2
+2ax的和成为一个完全平方式,再减去a
2
,整个式子的值不变,于是有:
x
2
+2ax-3a
2
=(x
2
+2ax+a
2
)-a
2
-3a
2
=(x+a)
2
-(2a)
2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a
2
-4a-12.
问题3:若x-y=5,xy=3,求:①x
2
+y
2
;②x
4
+y
4
的值.
使式子
1-x
2+x
有意义的x的取值范围是
x≤1且x≠-2
x≤1且x≠-2
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案