题目内容
若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为( )
A.直线x=1 B.直线x=-2
C.直线x=-1 D.直线x=-4
C
某地自来水公司为限制单位用水,每月只给某单位计划内用水3 000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.
(1)某月该单位用水3 200吨,水费是______元;若用水2 800吨,水费是______元;
(2)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式;
(3)若某月该单位缴纳水费1 540元,则该单位这个月的用水量为多少吨?
如图,D是△ABC的BC边的中点,AE平分∠BAC,AE⊥CE于点E,且AB=10,AC=16,则DE的长度为 .
如图,在矩形ABCD中,AB=1,BC=3,点E为BC边上的动点(点E与点B、C不重合),设BE=x.
操作:在射线BC上取一点F,使得EF=BE,以点F为直角顶点、EF为边作等腰直角三角形EFG,设△EFG与矩形ABCD重叠部分的面积为S.
(1)求S与x的函数关系式,并写出自变量x的取值范围;
(2)S是否存在最大值?若存在,请直接写出最大值,若不存在,请说明理由.
已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.
如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).
(1)求此二次函数的解析式;
2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.
若与 是同类项,则= ,b= .
已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.