题目内容
某小组同学,新年时每人互送贺年卡一张,共送贺年卡56张,这个小组共有_________人.
有A、B两个不透明的口袋,每个口袋里装有两个相同的球,A袋中的两个球上分别写了“细”“致”的字样,B带出那两个球上分别写了“信”“心”的字样,若从每个口袋里各摸出一个球,在刚好能组成“细心”这样的概率是______.
已知:△ABC,∠A、∠B、∠C之和为多少?为什么?
解:∠A+∠B+∠C=180°
理由:作∠ACD=∠A,并延长BC到E
∵∠ACD=∠ (已作)
AB∥CD( )
∴∠B= ( )
而∠ACB+∠ACD+∠DCE=180°
∴∠ACB+ + =180°( )
下列运算中,正确的是( )
A. a2•a3=a6 B. (a﹣b)(b﹣a)=a2﹣b2 C. (ab2)3=ab6 D. (﹣2a2)2=4a4
已知直线∥,点A,B,C在直线上,点E,F,G在直线上,任取三个点连成一个三角形,求:
(1)连成△ABE的概率;
(2)连成的三角形的两个顶点在直线上的概率.
在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=________°.
一张长方形桌子的长是150cm,宽是100cm,现在要设计一块长方形桌布,面积是桌面的2倍,且使四周垂下的边宽是xcm.根据题意,得( )
A. (150+x)(100+x)=150×100×2 B. (150+2x)(100+2x)=150×100×2
C. (150+x)(100+x)=150×100 D. 2(150x+100x)=150×100
如图1,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲是一名游泳运动健将,乙是一名游泳爱好者,甲在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两人同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲游动时,y(m)与t(s)的函数图象如图2所示.
(1)赛道的长度是 m,甲的速度是 m/s;
(2)经过多少秒时,甲、乙两人第二次相遇?
(3)若从甲、乙两人同时开始出发到2分钟为止,甲、乙共相遇了 次.2分钟时,乙距池边B1B2的距离为多少米。
若不等式的解集是x>3,则a的取值范围是_______。