题目内容

已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F. 求证:BE+CF=EF.
分析:根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.
解答:证明:∵BD平分∠ABC,
∴∠EBD=∠DBC,
∵EF∥BC,
∴∠EDB=∠DBC,
∴∠EDB=∠EBD,
∴DE=BE,
同理CF=DF,
∴EF=DE+DF=BE+CF,
即BE+CF=EF.
点评:本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网