题目内容
已知,△ABC为等边三角形,点P是射线CM上一点,连接AP,把△ACP绕点A按顺时针方向旋转60°,得△ABD,直线BD与射线CM交于点E,连接AE.
(1)如图,①求∠BEC的度数;

②若AE=2BE,猜想线段CE、BE的数量关系,并证明你的猜想;
(2)如图,若AE=mBE,求
的值.

(1)如图,①求∠BEC的度数;
②若AE=2BE,猜想线段CE、BE的数量关系,并证明你的猜想;
(2)如图,若AE=mBE,求
见试题解析.
试题分析:⑴
⑵再由
⑶有(2)证明可知
试题解析:.(1)∵∵△ACP旋转得到△ABD
∴△ACP≌△ABD
∴∠ACP=∠ABD 1分
∵△ABC是等边三角形
∴∠ABC=∠ACB=60°
∵∠BCP+∠ACP=∠ACB
∴∠BCP+∠ABD=∠ACB=60°
∵∠BCP+∠ABD+∠ABC+∠BEC=180°
∴∠BEC=60° 2分
(2) CE=3BE 3分
在EC上截取EF=EB,连结BF
∵∠BEC=60°, EF=EB
∴△BEF是等边三角形
∴∠EBF=60°,EF=EB=BF 4分
∵△ABC是等边三角形
∴∠ABC=60°,AB=BC
∵∠EBF-∠ABF=∠EBA, ∠ABC-∠ABF=∠FBC
在△EAB和△FBC中,
∴△EAB≌△FBC(SAS)
∴CF=AE 6分
∵AE=2BE
∴CF=2BE 7分
∴CE=CF+EF=3BE
(3)有(2)证明可知CF=AE, 9分
∵AE=mBE
∴CF=mBE 10分
∴CE=CF+EF=(m+1)BE 11分
∴
练习册系列答案
相关题目