题目内容
为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 元.
把8a3﹣8a2+2a进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1)
B.8a2(a﹣1)
C.2a(2a﹣1)2
D.2a(2a+1)2
若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是 °.
如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
计算:.
下列说法错误的是( )
A.角平分线上的点到角的两边的距离相等
B.直角三角形斜边上的中线等于斜边的一半
C.菱形的对角线相等
D.平行四边形是中心对称图形
问题探究:
1.新知学习
若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).
2.解决问题
已知等边三角形ABC的边长为2.
(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;
(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;
(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MOA=S△DOE.
①求证:ME是△ABC的面径;
②连接AE,求证:MD∥AE;
(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)
圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )
A.0.324πm2 B.0.288πm2 C.1.08πm2 D.0.72πm2
如图所示,点E,F是平行四边形ABCD对角线BD上的点,BF=DE,求证:AE=CF.