题目内容

如图,MN为⊙O的直径,A、B是⊙O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,求PA+PB的最小值.

解:∵MN=20,

∴⊙O的半径=10,

连接OA、OB,

在Rt△OBD中,OB=10,BD=6,

∴OD==8,

同理,在Rt△AOC中,OA=10,AC=8,

∴OC==6,

∴CD=8+6=14,

作点B关于MN的对称点B′,连接AB′,则AB′即为PA+PB的最小值,B′D=BD=6,过点B′作AC的垂线,交AC的延长线于点E,

在Rt△AB′E中,

∵AE=AC+CE=8+6=14,B′E=CD=14,

∴AB′=14

∴PA+PB的最小值是14

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网