题目内容
说出∠CAD=∠DBC的理由.
分析:本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.
解答:解:理由:∵∠CAE=∠DBF(已知),
∴∠CAB=∠DBA(等角的补角相等).
在△ABC和△DBA中
AC=BD(已知),
∠CAB=∠DBA,
AB=BA(公共边),
∴△ABC≌△DBA(SAS).
∴∠ABC=∠BAD(全等三角形的对应角相等).
∴∠CAB-∠BAD=∠DBA-∠ABC.
即:∠CAD=∠DBC.
∴∠CAB=∠DBA(等角的补角相等).
在△ABC和△DBA中
AC=BD(已知),
∠CAB=∠DBA,
AB=BA(公共边),
∴△ABC≌△DBA(SAS).
∴∠ABC=∠BAD(全等三角形的对应角相等).
∴∠CAB-∠BAD=∠DBA-∠ABC.
即:∠CAD=∠DBC.
点评:本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.
练习册系列答案
相关题目
| 2 |
| A、(0,0) | ||||||||
B、(
| ||||||||
| C、(1,1) | ||||||||
D、(
|