题目内容
如图,AB是⊙O的直径,点F,C是⊙O上两点,且
=
=
,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2
,求⊙O的半径.![]()
![]()
(1)证明:连结OC,如图,
∵
=
,
∴∠FAC=∠BAC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠FAC=∠OCA,
∴OC∥AF,
∵CD⊥AF,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:连结BC,如图,
∵AB为直径,
∴∠ACB=90°,
∵
=
=
,
∴∠BOC=
×180°=60°,
∴∠BAC=30°,
∴∠DAC=30°,
在Rt△ADC中,CD=2
,
∴AC=2CD=4
,
在Rt△ACB中,BC=
AC=
×4
=4,
∴AB=2BC=4,
∴⊙O的半径为4.
![]()
练习册系列答案
相关题目