题目内容

已知梯形ABCD中,AD∥BC,AB=AD(如图所示),∠BAD的平分线AE交BC于点E,连接DE.

(1)在下图中,用尺规作∠BAD的平分线AE(保留作图痕迹不写作法),并证明四边形ABED是菱形.

(2)若∠ABC=60°,EC=2BE.求证:ED⊥DC.

答案:
解析:

  解答:证明:(1)梯形ABCD中,AD∥BC,

  ∴四边形ABED是平行四边形,

  又AB=AD,

  ∴四边形ABED是菱形;

  (2)∵四边形ABED是菱形,∠ABC=60°,

  ∴∠DEC=60°,AB=ED,

  又EC=2BE,

  ∴EC=2DE,

  ∴△DEC是直角三角形,

  ∴ED⊥DC.

  分析:(1)根据尺规作图:角的平分线的基本做法,可得到∠BAD的平分线AE;利用菱形的判定定理,即可证得;

  (2)根据直角三角形的性质定理,可得△EDC是直角三角形,即可得ED⊥DC;

  点评:本题考查了尺规作图及菱形、直角三角形的性质及判定,综合性较强,锻炼了学生的动手、动脑的能力.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网