题目内容

如图,已知抛物线yx2bxc与坐标轴交于ABC三点, A点的坐标为
(-1,0),过点C的直线yx-3与x轴交于点Q,点P是线段BC上的一个动点,过PPHOB于点H.若PB=5t,且0<t<1.

【小题1】(1)填空:点C的坐标是_       _b_     _
【小题2】(2)求线段QH的长(用含t的式子表示);
【小题3】(3)依点P的变化,是否存在t的值,使以PHQ为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.


【小题1】(1)(0,-3),b=-.
【小题2】(2)由(1),得yx2x-3,它与x轴交于AB两点,得B(4,0).
OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC
OCOBBC=3∶4∶5,
HPHBBP=3∶4∶5,
PB=5t,∴HB=4tHP=3t
OHOBHB=4-4t
yx-3与x轴交于点Q,得Q(4t,0).
OQ=4t
①当HQB之间时,
QHOHOQ
=(4-4t)-4t=4-8t.··················································· 3分
②当HOQ之间时,
QHOQOH
=4t-(4-4t)=8t-4.··················································· 4分
综合①,②得QH=|4-8t|;
【小题3】(3)存在t的值,使以PHQ为顶点的三角形与△COQ相似.
①当HQB之间时,QH=4-8t
若△QHP∽△COQ,则QHCOHPOQ,得
t.········································································· 5分
若△PHQ∽△COQ,则PHCOHQOQ,得
t2+2t-1=0.
t1-1,t2=--1(舍去).······································· 6分
②当HOQ之间时,QH=8t-4.
若△QHP∽△COQ,则QHCOHPOQ,得
t.········································································· 7分
若△PHQ∽△COQ,则PHCOHQOQ,得
t2-2t+1=0.
t1t2=1(舍去).····························································· 8分
综上所述,存在的值,t1-1,t2t3.解析:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网