题目内容
分析:连接OC,根据等边对等角,易得∠A=∠ACO,∠B=∠BCO,即∠A+∠B=∠ACB;根据圆周角定理,可求得∠ACB=$frac{1}{2}$∠AOB,由此得解.
解答:
解:∵∠AOB=100°
∴∠ACB=50°
连接OC,则有:∠A=∠OCA,∠B=∠OCB
∴∠ACB=∠ACO+∠BCO=∠A+∠B=50°
∴∠A+∠B=50°.
故选C.
∴∠ACB=50°
连接OC,则有:∠A=∠OCA,∠B=∠OCB
∴∠ACB=∠ACO+∠BCO=∠A+∠B=50°
∴∠A+∠B=50°.
故选C.
点评:本题主要考查了圆周角定理和等腰三角形的性质.
练习册系列答案
相关题目