题目内容
在□ABCD中,点O是对角线AC、BD的交点,AC⊥BC,且AB=10cm,AD=8cm,则OB=___________cm.
袋子中装有2个黑球4个白球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到黑球的概率是 ( )
A. B. C. D.
一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.
(1)小红摸出标有数字3的小球的概率是 ;
(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;
(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C、F、D的抛物线为.
(1)求点D的坐标(用含m的式子表示)
(2)若点G的坐标为(0,-3),求该抛物线的解析式.
(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出P的坐标,若不存在,说明理由.
在□ABCD中,点E、F在AC上,且∠ABE=∠CDF,求证:BE=DF.
比较大小:3__________ -2(填>、<或=)
如图是某几何体的三视图,则该几何体是( )
A.球 B.圆柱 C.圆锥 D.三棱柱
如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是( )
A.①② B.①②③ C.①④ D.①②④
解方程 (每小题4分,共8分)
(1)(3x+2)(x+3) =x+14
(2)-3x2 + 22x–24 = 0