题目内容

已知关于x的方程x2+kx+k2-k+2=0,为判别这个方程根的情况,一名同学的解答过程如下:
“解:△=(k)2-4×1×(k2-k+2)
=-k2+4k-8
=(k-2)2+4,
∵(k-2)2≥0,4>0,
∴△=(k-2)2+4>0,
∴原方程有两个不相等的实数根。”
请你判断其解答是否正确,若有错误,请你写出正确解答。
解:解答过程不正确
△=-k2+4k-8=-(k2-4k+8)
=-[(k-2)2-4+8]
=-(k-2)2-4
∵(k-2)2≥0, 
∴-(k-2)2≤0 
∴-(k-2)2-4<0 
即△<0,所以方程没有实数根。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网