题目内容
【题目】如图,在矩形纸片ABCD中,AB=6cm,AD=8cm,折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,折痕为AE,则EF=_____cm.
![]()
【答案】3
【解析】
根据矩形的性质得到BC=AD=8cm,∠B=90°,由勾股定理得到AC的值,根据折叠的性质得到AF=AB=6,EF=BE,∠AFE=∠B=90°,根据勾股定理即可得到结论.
解:∵四边形ABCD是矩形,
∴BC=AD=8cm,∠B=90°
∴AC=
=
=10cm,
∵折叠该纸片,使得AB边落在对角线AC上,点B落在点F处,
∴AF=AB=6,EF=BE,∠AFE=∠B=90°,
∴CF=4,∠CFE=90°,CE=8﹣EF,
∵EF2+CF2=CE2,
∴EF2+42=(8﹣EF)2,
解得:EF=3cm,
故答案为:3.
练习册系列答案
相关题目
【题目】为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | b% |
中国诗词大会 | a | 40% |
出彩中国人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)补全上面的条形统计图;
(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
![]()