题目内容
已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:
|
x |
… |
-1 |
0 |
1 |
2 |
3 |
4 |
… |
|
y |
… |
8 |
3 |
0 |
-1 |
0 |
3 |
… |
(1)求该二次函数的解析式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m 取何值时,
?
【答案】
(1)y=x2-4x+3;(2)当x=2时,ymin=-1;(3)m<1.
【解析】
试题分析:(1)由表格得到二次函数与x轴的两交点坐标,设出二次函数的两根式方程,将(0,3)代入求出a的值,即可确定出二次函数解析式;
(2)将(1)得出的函数解析式配方后,根据完全平方式大于等于0,即可求出y的最小值,以及此时x的值;
(3)将A点坐标代入二次函数解析式中表示出y1,B坐标代入表示出y2,由y1>y2列出关于m的不等式,求出不等式的解集即可得到m的范围.
试题解析:(1)由表格得:二次函数与x轴的两交点分别为(1,0),(3,0),
设二次函数解析式为y=a(x-1)(x-3),
将x=0,y=3代入得:3=3a,即a=1,
则二次函数解析式为y=(x-1)(x-3)=x2-4x+3.
(2)由(1)y=x2-4x+3=(x-2)2-1,
则当x=2时,ymin=-1.
将A坐标代入二次函数解析式得:y1=m2-4m+3;
B坐标代入二次函数解析式得:y2=(m+2)2-4(m+2)+3=m2-1,
若y1>y2,则m2-4m+3>m2-1,
解得:m<1.
考点:1.待定系数法求二次函数解析式;2.二次函数图象上点的坐标特征;3.二次函数的最值.
练习册系列答案
相关题目
已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
| A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |