题目内容
| 12 |
| 5 |
| 12 |
| 5 |
分析:先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.
解答:
解:连接PC.
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°;
又∵∠ACB=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=4,BC=3,
∴AB=5,
∴
AC•BC=
AB•PC,
∴PC=
.
∴线段EF长的最小值为
;
故答案是:
.
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠C=90°;
又∵∠ACB=90°,
∴四边形ECFP是矩形,
∴EF=PC,
∴当PC最小时,EF也最小,
即当CP⊥AB时,PC最小,
∵AC=4,BC=3,
∴AB=5,
∴
| 1 |
| 2 |
| 1 |
| 2 |
∴PC=
| 12 |
| 5 |
∴线段EF长的最小值为
| 12 |
| 5 |
故答案是:
| 12 |
| 5 |
点评:本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.
练习册系列答案
相关题目