题目内容
如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.
(1)∠MON=______;
(2)如果∠AOB=α,∠BOC=β,其它条件不变,那么∠MON=______ (用含α,β的式子表示);
(3)若将条件变成O是直线AC上一点,OB为一条射线,OM平分∠AOB,ON平分∠BOC,请你猜想一个结论,并说明它是正确的.
解(1)∵∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,
∴∠BOM=
∠AOB=45°,∠NOB=
∠BOC=15°,
∴∠MON=∠BOM+∠BON=60°;
(2)∵∠BOM=
∠AOB=
α,∠NOB=
∠BOC=
β,
∴∠MON=∠BOM+∠BON=
α+
β=
(α+β);
(3)∠MON=90°.理由如下:
∵O是直线AC上一点,
∴∠AOC=180°,
∵OM平分∠AOB,ON平分∠BOC,
∴∠BOM=
∠AOB,∠NOB=
∠BOC,
∴∠MON=∠BOM+∠BON=
(∠AOB+∠BOC)=
∠AOC=90°.
分析:(1)根据角平分线的定义得到∠BOM=
∠AOB=45°,∠NOB=
∠BOC=15°,则∠MON=∠BOM+∠BON=60°;
(2)同理得到∠BOM=
∠AOB=
α,∠NOB=
∠BOC=
β,则∠MON=∠BOM+∠BON=
α+
β=
(α+β);
(3)由O是直线AC上一点得到∠AOC=180°,根据角平分线的定义得到∠BOM=
∠AOB,∠NOB=
∠BOC,所以∠MON=∠BOM+∠BON=
(∠AOB+∠BOC)=
∠AOC.
点评:本题考查了角度的计算:∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC;∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.
∴∠BOM=
∴∠MON=∠BOM+∠BON=60°;
(2)∵∠BOM=
∴∠MON=∠BOM+∠BON=
(3)∠MON=90°.理由如下:
∵O是直线AC上一点,
∴∠AOC=180°,
∵OM平分∠AOB,ON平分∠BOC,
∴∠BOM=
∴∠MON=∠BOM+∠BON=
分析:(1)根据角平分线的定义得到∠BOM=
(2)同理得到∠BOM=
(3)由O是直线AC上一点得到∠AOC=180°,根据角平分线的定义得到∠BOM=
点评:本题考查了角度的计算:∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC;∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB-∠BOC.
练习册系列答案
相关题目