题目内容
如图,AD是∠CAE的平分线,∠B=29°,∠ACD=99°,那么∠DAE等于
- A.55°
- B.59°
- C.45°
- D.49°
A
分析:根据角平分线的性质及三角形内角和定理解答.
解答:∵∠B=29°,∠ACD=99°,∴∠ACB=180°-∠ACD=180-99°=81°,
∴∠CAE=∠B+∠ACB=29°+81°=110°.
∴∠DAE=
∠CAE=55°.
故选A.
点评:此题主要考查角平分线的性质、三角形外角的性质和平角的定义.
分析:根据角平分线的性质及三角形内角和定理解答.
解答:∵∠B=29°,∠ACD=99°,∴∠ACB=180°-∠ACD=180-99°=81°,
∴∠CAE=∠B+∠ACB=29°+81°=110°.
∴∠DAE=
故选A.
点评:此题主要考查角平分线的性质、三角形外角的性质和平角的定义.
练习册系列答案
相关题目
| A、55° | B、59° | C、45° | D、49° |