题目内容
观察下列计算过程:
1-
=1-
=
=
×
;
1-
=1-
=
=
×
;
1-
=1-
=
=
×
;
…
你能得出什么结论?用得到的结论计算:(1-
)(1-
)…(1-
)(1-
).
1-
| 1 |
| 22 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
1-
| 1 |
| 32 |
| 1 |
| 9 |
| 8 |
| 9 |
| 2 |
| 3 |
| 4 |
| 3 |
1-
| 1 |
| 42 |
| 1 |
| 16 |
| 15 |
| 16 |
| 3 |
| 4 |
| 5 |
| 4 |
…
你能得出什么结论?用得到的结论计算:(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 20072 |
| 1 |
| 20082 |
分析:根据已知数据的变化规律得出第n个式子为:1-
=
×
,进而代入算式求出即可.
| 1 |
| (n+1)2 |
| n |
| n+1 |
| n+2 |
| n+1 |
解答:解:∵1-
=1-
=
=
×
;
1-
=1-
=
=
×
;
1-
=1-
=
=
×
;
…
∴第n个式子为:1-
=
×
,
(1-
)(1-
)…(1-
)(1-
)
=
×
×
×
×
×
×…
×
×
×
,
=
×
,
=
.
| 1 |
| 22 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
1-
| 1 |
| 32 |
| 1 |
| 9 |
| 8 |
| 9 |
| 2 |
| 3 |
| 4 |
| 3 |
1-
| 1 |
| 42 |
| 1 |
| 16 |
| 15 |
| 16 |
| 3 |
| 4 |
| 5 |
| 4 |
…
∴第n个式子为:1-
| 1 |
| (n+1)2 |
| n |
| n+1 |
| n+2 |
| n+1 |
(1-
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 20072 |
| 1 |
| 20082 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 2006 |
| 2007 |
| 2008 |
| 2007 |
| 2007 |
| 2008 |
| 2009 |
| 2008 |
=
| 1 |
| 2 |
| 2009 |
| 2008 |
=
| 2009 |
| 4016 |
点评:此题主要考查了数字变化规律,根据已知得出数字中的变与不变是解题关键.
练习册系列答案
相关题目