搜索
题目内容
14、已知:如图,⊙O
1
与⊙O
2
外切于点P,⊙O
1
的半径为3,且O
1
O
2
=8,则⊙O
2
的半径R=
5
.
试题答案
相关练习册答案
分析:
根据两圆外切时,圆心距等于两圆半径的和,进行计算.
解答:
解:根据题意,两圆外切得:R=8-3=5.
点评:
本题考查了两圆的位置关系与数量之间的联系.
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
已知;如图,⊙O
1
与⊙O
2
内切于点A,⊙O
2
的直径AC交⊙O
1
于点B,⊙O
2
的弦FC切⊙
O
1
于点D,AD的延长线交⊙O
2
于点E,连接AF、EF、BD.
(1)求证:AC•AF=AD•AE;
(2)若O
1
O
2
=9,cos∠BAD=
2
3
,求DE的长.
已知:如图,⊙O
1
与⊙O
2
外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O
1
的半径为R,⊙O
2
的半径为r,若tan∠ABC=
2
,则
R
r
的值为( )
A、
2
B、
3
C、2
D、3
(1998•南京)已知,如图,⊙O
1
与⊙O
2
相交,点P是其中一个交点,点A在⊙O
2
上,AP的延长线交⊙O
1
于点B,AO
2
的延长线交⊙O
1
于点C、D,交⊙O
2
于点E,连接PC、PE、PD,且
PC
PD
=
CE
DE
,过A作⊙O
1
的切线AQ,切点为Q.求证:
(1)∠CPE=∠DPE;
(2)AQ
2
-AP
2
=PC•PD.
已知:如图,⊙O
1
与⊙O
2
外切于A点,直线l与⊙O
1
、⊙O
2
分别切于B,C点,若⊙O
1
的半径r
1
=2cm,⊙O
2
的半径r
2
=3cm.求BC的长.
已知:如图,⊙O
1
与⊙O
2
相交于A、B,若两圆半径分别为12和5,O
1
O
2
=13,则AB=
120
13
120
13
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案