题目内容
三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )
A. 1个 B. 3个 C. 5个 D. 无数个
如图,利用格点 A,B,C,D,E,F 中的四个点为顶点,你能画出多少个不同的平行四边形?请画出来,并用符号表示出来.
﹣27的立方根与的平方根的和是 .
如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了_________米.
如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是( )
A. 59° B. 60° C. 56° D. 22°
(本小题满分9分)
(1)阅读下文,寻找规律:
已知x≠1时,(1-x)(1+x)=1-x2,
(1-x)(1+x+x2)=1-x3,
(1-x)(1+x+x2+x3)=1-x4.…
观察上式,并猜想:
(1-x)(1+x+x2+ x3+x4)=______________.
(1-x)(1+x+x2+…+xn)=_______________.
(2)通过以上规律,请你进行下面的探素:
①(a-b)(a+b)= ______________.
②(a-b)(a2+ab+b2)= ______________.
③(a-b)(a3+a2b+ab2+b3)= ______________.
(3)根据你的猜想,计算:
1+2+22+…+22015+22016+22017
如图8,AD//EG∥BC,AC∥EF,若∠1=50°,则∠AHG=__________°.
课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”
(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;
(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.
如图,已知直线y1=x+m与y2=kx-1相交于点P(-1,1),关于x的不等式x+m>kx-1的解集是( )
A. x≥-1 B. x>-1 C. x≤-1 D. x<-1