ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÔËÓÃͼ£¨I£©Í¼ÖдóÕý·½ÐεÄÃæ»ý¿É±íʾΪ£¨a+b£©2£¬Ò²¿É±íʾΪc2+4¡Á
ab£¬¼´£¨a+b£©2=c2+4¡Á
abÓÉ´ËÍÆµ¼³öÒ»¸öÖØÒªµÄ½áÂÛa2+b2=c2£¬Õâ¸öÖØÒªµÄ½áÂÛ¾ÍÊÇÖøÃûµÄ¡°¹´¹É¶¨Àí¡±£®ÕâÖÖ¸ù¾ÝͼÐοÉÒÔ¼«¼òµ¥µØÖ±¹ÛÍÆÂÛ»òÑéÖ¤Êýѧ¹æÂɺ͹«Ê½µÄ·½·¨£¬¼ò³Æ¡°ÎÞ×ÖÖ¤Ã÷¡±£®
£¨1£©ÇëÄãÓÃͼ£¨¢ò£©£¨2002Äê¹ú¼ÊÊý×Ö¼Ò´ó»á»á±ê£©µÄÃæ»ý±í´ïʽÑéÖ¤¹´¹É¶¨Àí£¨ÆäÖÐËĸöÖ±½ÇÈý½ÇÐεĽϴóµÄÖ±½Ç±ß³¤¶¼Îªa£¬½ÏСµÄÖ±½Ç±ß³¤¶¼Îªb£¬Ð±±ß³¤¶¼Îªc£©£®
£¨2£©ÇëÄãÓ㨢ó£©ÌṩµÄͼÐνøÐÐ×éºÏ£¬ÓÃ×éºÏͼÐεÄÃæ»ý±í´ïʽÑéÖ¤£º£¨x+y£©2=x2+2xy+y2
£¨3£©ÏÖÓÐ×ã¹»¶àµÄ±ß³¤ÎªxµÄСÕý·½ÐΣ¬±ß³¤ÎªyµÄ´óÕý·½ÐÎÒÔ¼°³¤Îªx¿íΪyµÄ³¤·½ÐΣ¬ÇëÄã×Ô¼ºÉè¼ÆÍ¼ÐεÄ×éºÏ£¬ÓÃÆäÃæ»ý±í´ïʽÑéÖ¤£º£¨x+y£©£¨x+2y£©=x2+3xy+2y2£®
| 1 |
| 2 |
| 1 |
| 2 |
£¨1£©ÇëÄãÓÃͼ£¨¢ò£©£¨2002Äê¹ú¼ÊÊý×Ö¼Ò´ó»á»á±ê£©µÄÃæ»ý±í´ïʽÑéÖ¤¹´¹É¶¨Àí£¨ÆäÖÐËĸöÖ±½ÇÈý½ÇÐεĽϴóµÄÖ±½Ç±ß³¤¶¼Îªa£¬½ÏСµÄÖ±½Ç±ß³¤¶¼Îªb£¬Ð±±ß³¤¶¼Îªc£©£®
£¨2£©ÇëÄãÓ㨢ó£©ÌṩµÄͼÐνøÐÐ×éºÏ£¬ÓÃ×éºÏͼÐεÄÃæ»ý±í´ïʽÑéÖ¤£º£¨x+y£©2=x2+2xy+y2
£¨3£©ÏÖÓÐ×ã¹»¶àµÄ±ß³¤ÎªxµÄСÕý·½ÐΣ¬±ß³¤ÎªyµÄ´óÕý·½ÐÎÒÔ¼°³¤Îªx¿íΪyµÄ³¤·½ÐΣ¬ÇëÄã×Ô¼ºÉè¼ÆÍ¼ÐεÄ×éºÏ£¬ÓÃÆäÃæ»ý±í´ïʽÑéÖ¤£º£¨x+y£©£¨x+2y£©=x2+3xy+2y2£®
·ÖÎö£º£¨1£©¸ù¾ÝÒõÓ°²¿·ÖµÄÃæ»ý=´óÕý·½ÐεÄÃæ»ý-СÕý·½ÐεÄÃæ»ý=4¸öÖ±½ÇÈý½ÇÐεÄÃæ»ý£¬¼´¿ÉÖ¤Ã÷£»
£¨2£©¿ÉÒÔÆ´³ÉÒ»¸ö±ß³¤ÊÇx+yµÄÕý·½ÐΣ¬ËüÓÉÁ½¸ö±ß³¤·Ö±ðÊÇx¡¢yµÄÕý·½ÐκÍÁ½¸ö³¤¡¢¿í·Ö±ðÊÇx¡¢yµÄ³¤·½ÐÎ×é³É£»
£¨3£©¿ÉÒÔÆ´³ÉÒ»¸ö³¤¡¢¿í·Ö±ðÊÇx+yºÍx+2yµÄ³¤·½ÐΣ¬ËüÓɱ߳¤ÊÇxµÄÕý·½ÐΣ¬ÒÔ¼°±ß³¤ÎªyµÄÕý·½Ðκͳ¤¿í·Ö±ðÊÇxºÍyµÄ¾ØÐνø¶øµÃ³ö´ð°¸£®
£¨2£©¿ÉÒÔÆ´³ÉÒ»¸ö±ß³¤ÊÇx+yµÄÕý·½ÐΣ¬ËüÓÉÁ½¸ö±ß³¤·Ö±ðÊÇx¡¢yµÄÕý·½ÐκÍÁ½¸ö³¤¡¢¿í·Ö±ðÊÇx¡¢yµÄ³¤·½ÐÎ×é³É£»
£¨3£©¿ÉÒÔÆ´³ÉÒ»¸ö³¤¡¢¿í·Ö±ðÊÇx+yºÍx+2yµÄ³¤·½ÐΣ¬ËüÓɱ߳¤ÊÇxµÄÕý·½ÐΣ¬ÒÔ¼°±ß³¤ÎªyµÄÕý·½Ðκͳ¤¿í·Ö±ðÊÇxºÍyµÄ¾ØÐνø¶øµÃ³ö´ð°¸£®
½â´ð£º
½â£º£¨1£©´óÕý·½ÐεÄÃæ»ýΪ£ºc2£¬Öмä¿Õ°×²¿·ÖÕý·½ÐÎÃæ»ýΪ£º£¨b-a£©2£»
ËĸöÒõÓ°²¿·ÖÖ±½ÇÈý½ÇÐÎÃæ»ýºÍΪ£º4¡Á
ab£»
ÓÉͼÐιØÏµ¿ÉÖª£º´óÕý·½ÐÎÃæ»ý=¿Õ°×Õý·½ÐÎÃæ»ý+ËÄÖ±½ÇÈý½ÇÐÎÃæ»ý£¬¼´ÓУº
c2=£¨b-a£©2+4¡Á
ab=b2-2ab+a2+2ab=a2+b2£»
£¨2£©Èçͼ1Ëùʾ£º´óÕý·½Ðα߳¤Îª£¨x+y£©ËùÒÔÃæ»ýΪ£º£¨x+y£©2£¬
ËüµÄÃæ»ýÒ²µÈÓÚÁ½¸ö±ß³¤·Ö±ðΪx£¬yºÍÁ½¸ö³¤Îªx¿íΪyµÄ¾ØÐÎÃæ»ýÖ®ºÍ£¬
¼´x2+2xy+y2
ËùÒÔÓУº£¨x+y£©2=x2+2xy+y2³ÉÁ¢£»
£¨3£©Èçͼ2Ëùʾ£º´ó¾ØÐεij¤¡¢¿í·Ö±ðΪ£¨x+y£©£¬£¨x+2y£©£¬ÔòÆäÃæ»ýΪ£º£¨x+y£©•£¨x+2y£©£¬
´ÓͼÐιØÏµÉϿɵôó¾ØÐÎΪһ¸ö±ß³¤ÎªxµÄÕý·½ÐÎÒÔ¼°2¸ö±ß³¤ÎªyµÄÕý·½ÐκÍÈý¸öС¾ØÐι¹³ÉµÄÔòÆäÃæ»ýÓֿɱíʾΪ£º
x2+3xy+2y2£¬
ÔòÓУº£¨x+y£©£¨x+2y£©=x2+3xy+2y2£®
ËĸöÒõÓ°²¿·ÖÖ±½ÇÈý½ÇÐÎÃæ»ýºÍΪ£º4¡Á
| 1 |
| 2 |
ÓÉͼÐιØÏµ¿ÉÖª£º´óÕý·½ÐÎÃæ»ý=¿Õ°×Õý·½ÐÎÃæ»ý+ËÄÖ±½ÇÈý½ÇÐÎÃæ»ý£¬¼´ÓУº
c2=£¨b-a£©2+4¡Á
| 1 |
| 2 |
£¨2£©Èçͼ1Ëùʾ£º´óÕý·½Ðα߳¤Îª£¨x+y£©ËùÒÔÃæ»ýΪ£º£¨x+y£©2£¬
ËüµÄÃæ»ýÒ²µÈÓÚÁ½¸ö±ß³¤·Ö±ðΪx£¬yºÍÁ½¸ö³¤Îªx¿íΪyµÄ¾ØÐÎÃæ»ýÖ®ºÍ£¬
¼´x2+2xy+y2
£¨3£©Èçͼ2Ëùʾ£º´ó¾ØÐεij¤¡¢¿í·Ö±ðΪ£¨x+y£©£¬£¨x+2y£©£¬ÔòÆäÃæ»ýΪ£º£¨x+y£©•£¨x+2y£©£¬
´ÓͼÐιØÏµÉϿɵôó¾ØÐÎΪһ¸ö±ß³¤ÎªxµÄÕý·½ÐÎÒÔ¼°2¸ö±ß³¤ÎªyµÄÕý·½ÐκÍÈý¸öС¾ØÐι¹³ÉµÄÔòÆäÃæ»ýÓֿɱíʾΪ£º
x2+3xy+2y2£¬
ÔòÓУº£¨x+y£©£¨x+2y£©=x2+3xy+2y2£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˹´¹É¶¨ÀíµÄÖ¤Ã÷£¬×¢ÒâÊìÁ·ÕÆÎÕͨ¹ý²»Í¬µÄ·½·¨¼ÆËãͬһ¸öͼÐεÄÃæ»ýÀ´Ö¤Ã÷һЩ¹«Ê½µÄ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿