题目内容
已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.
(1)若方程有两个相等的实数根,求m的值;
(2)若方程的两实数根之积等于m2﹣9m+2,求的值.
如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D= .
已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
反比例函数的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则x1与x2的大小关系是( )
A. x1>x2 B. x1=x2 C. x1<x2 D. 不确定
如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
计算:.
如图所示,在Rt△ABC中,CD是斜边AB上的高,∠ACD=40°,则∠EBC= 度.
先化简,再求值:3ab2﹣2(ab﹣)+(3a2b﹣2ab2),其中a=﹣4,b=.
分解因式:xy2﹣x= .